Logo do repositório
Comunidades & Coleções
Busca no Repositório
Guia Arandu
  • Sobre
  • Equipe
  • Como depositar
  • Fale conosco
  • English
  • Português do Brasil
Entrar
Novo usuário? Clique aqui para cadastrar.Esqueceu sua senha?
  1. Início
  2. Pesquisar por Assunto

Navegando por Assunto "Sistemas especialistas (Computação)"

Filtrar resultados informando o último nome do autor
Agora exibindo 1 - 2 de 2
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Recomendação sensível ao contexto para comunicação aumentativa e alternativa baseada em aprendizagem de máquina
    (2024-02-23T03:00:00Z) Silva, Ulisses Chaves; Nascimento, André Câmara Alves do; http://lattes.cnpq.br/0622594061462533; http://lattes.cnpq.br/8993061329549653
    Comumente, observa-se a adoção de novas técnicas baseadas em inteligência artificial e aprendizagem de máquina (AM) em diversos contextos. Com o avanço das redes neurais artificiais, que possibilitam a representação de diversos tipos de dados e a compreensão das complexas relações entre eles, essa tendência foi ainda mais impulsionada. No entanto, a literatura atual mostra-se escassa ao tentar encontrar estudos atualizados que relacionem essas tecnologias a metodologias pedagógicas para resolver os diversos problemas sociais e promover a inclusão. Este trabalho propõe abordagens atuais utilizadas em AM para a recomendação de pictogramas em um sistema de Comunicação Aumentativa e Alternativa (AAC). Diante da complexidade das necessidades de usuários de AAC, neste trabalho dois modelos neurais sensíveis ao contexto são apresentados e comparados. Esses modelos utilizam técnicas de aprendizagem de máquina para considerar o contexto dinâmico do usuário para gerar recomendações, adaptando-se à localização e ao tempo específicos desse usuário que possui alguma deficiência na comunicação. Adicionalmente, são destacados outros trabalhos que foram usados como base para a criação dessa solução para o problema de recomendação de pictogramas existente na aplicação móvel Livox.
  • Imagem de Miniatura
    Item
    Xphide: um sistema especialista para a detecção de phishing
    (2023-08-25T03:00:00Z) Barros, Mateus Lins e Silva Duque de; Miranda, Péricles Barbosa da Cunha; http://lattes.cnpq.br/6425827511465244
    Phishing é um tipo de crime cibernético que visa o roubo de dados pessoais do usuário por meios de disfarces e enganação. Este artigo propõe o Xphide, um sistema especialista para a detecção de páginas maliciosas. A base da construção do sistema foi feita através de uma análise aprofundada a respeito de atributos relevantes para descrição de páginas web. Esta análise serviu de insumo para a elaboração das regras do processo decisório do Xphide, que foram separadas em 3 categorias: estáticas, de lista e dinâmicas. O sistema proposto foi avaliado em três diferentes bases de dados, extraídas de repositórios públicos, sendo 2 de phishing válidos, e 1 de phishing inválidos. Os resultados mostraram que o Xphide superou algoritmos de classificação tradicionais em termos de precisão e revocação, se mostrando uma alternativa promissora para a classificação de página web.
Logo do SIB-UFRPE
Arandu - Repositório Institucional da UFRPE

Universidade Federal Rural de Pernambuco - Biblioteca Central
Rua Dom Manuel de Medeiros, s/n, Dois Irmãos
CEP: 52171-900 - Recife/PE

+55 81 3320 6179  repositorio.sib@ufrpe.br
Logo da UFRPE

DSpace software copyright © 2002-2025 LYRASIS

  • Enviar uma sugestão